MATH 20D Spring 2023 Lecture 24.

Systems in Normal Form, Eigenvalue, and Eigenvectors.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Midterm 2 grades are available, regrade request window closing tonight.
- HW 4 grades available, regrade request window closing Sunday 11:59pm.

Outline

(1) Linear Systems in Normal Form
(2) Eigenvalues and Eigenvectors

Contents

(1) Linear Systems in Normal Form

(2) Eigenvalues and Eigenvectors

Last Time I

We saw two first order systems of differential equations

Last Time I

We saw two first order systems of differential equations
(i) Mixing Involving Two Interconnected Tanks:

$$
\begin{aligned}
x^{\prime}(t) & =-\frac{1}{3} x(t)+\frac{1}{12} y(t) \\
y^{\prime}(t) & =\frac{1}{3} x(t)-\frac{1}{3} y(t)
\end{aligned}
$$

$x(t)$ and $y(t)$ give the masses of salt in tanks A and B respectively.

Last Time I

We saw two first order systems of differential equations
(i) Mixing Involving Two Interconnected Tanks:

$$
\begin{aligned}
x^{\prime}(t) & =-\frac{1}{3} x(t)+\frac{1}{12} y(t) \\
y^{\prime}(t) & =\frac{1}{3} x(t)-\frac{1}{3} y(t)
\end{aligned}
$$

$x(t)$ and $y(t)$ give the masses of salt in tanks A and B respectively.
(ii) Higher order ODE's give first order system of ODE's

Last Time I

We saw two first order systems of differential equations
(i) Mixing Involving Two Interconnected Tanks:

$$
\begin{aligned}
x^{\prime}(t) & =-\frac{1}{3} x(t)+\frac{1}{12} y(t) \\
y^{\prime}(t) & =\frac{1}{3} x(t)-\frac{1}{3} y(t)
\end{aligned}
$$

$x(t)$ and $y(t)$ give the masses of salt in tanks A and B respectively.
(ii) Higher order ODE's give first order system of ODE's

Let $x_{1}(t)=y(t), x_{2}(t)=y^{\prime}(t)$, and $x_{3}(t)=y^{\prime \prime}(t)$. Then the third order ODE

$$
\begin{equation*}
y^{\prime \prime \prime}(t)+2 y^{\prime \prime}(t)+y^{\prime}(t)=0 \tag{1}
\end{equation*}
$$

is equivalent to the first order system of ODE's

$$
\begin{array}{rlr}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & = & x_{3}(t) \\
x_{3}^{\prime}(t) & =-x_{2}(t)-2 x_{3}(t)
\end{array}
$$

Last Time II

- Let $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2\end{array}\right)$.

Last Time II

- Let $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2\end{array}\right)$. The system of differential equations

$$
\begin{array}{rlr}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & = & x_{3}(t) \\
x_{3}^{\prime}(t) & =-x_{2}(t)-2 x_{3}(t)
\end{array}
$$

can be rewritten as

$$
\left(\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)
$$

- Let $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2\end{array}\right)$. The system of differential equations

$$
\begin{array}{rlr}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & = & x_{3}(t) \\
x_{3}^{\prime}(t) & =-x_{2}(t)-2 x_{3}(t)
\end{array}
$$

can be rewritten as

$$
\left(\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=A\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right) .
$$

- Let $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2\end{array}\right)$. The system of differential equations

$$
\begin{array}{rlr}
x_{1}^{\prime}(t) & =x_{2}(t) \\
x_{2}^{\prime}(t) & = & x_{3}(t) \\
x_{3}^{\prime}(t) & =-x_{2}(t)-2 x_{3}(t)
\end{array}
$$

can be rewritten as

$$
\left(\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)=A\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right) .
$$

- If we introduce the vector valued function $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ then the system can be written in matrix notation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

Matrix Differential Equations in Normal Form

Example

Rewrite each of the systems below as a first order equation in matrix notation
(a) $y^{\prime \prime}+2 y^{\prime}+3 y=\frac{1}{t}$
(b) $t y^{\prime \prime}+(1-t) y=e^{t}$
(c) $2 x^{\prime \prime}+6 x-2 y=0$
$y^{\prime \prime}+2 y-2 x=0$

Matrix Differential Equations in Normal Form

Example

Rewrite each of the systems below as a first order equation in matrix notation
(a) $y^{\prime \prime}+2 y^{\prime}+3 y=\frac{1}{t}$
(b) $t y^{\prime \prime}+(1-t) y=e^{t}$
(c) $2 x^{\prime \prime}+6 x-2 y=0$
$y^{\prime \prime}+2 y-2 x=0$

Definition

A system of differential equation is in normal form if it is expressed as

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{f}(t) \tag{2}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), \ldots, x_{n}(t)\right)$ and $\mathbf{f}(t)=\operatorname{col}\left(f_{1}(t), \ldots, f_{n}(t)\right)$.

Matrix Differential Equations in Normal Form

Example

Rewrite each of the systems below as a first order equation in matrix notation
(a) $y^{\prime \prime}+2 y^{\prime}+3 y=\frac{1}{t}$
(b) $t y^{\prime \prime}+(1-t) y=e^{t}$
(c) $2 x^{\prime \prime}+6 x-2 y=0$
$y^{\prime \prime}+2 y-2 x=0$

Definition

A system of differential equation is in normal form if it is expressed as

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{f}(t) \tag{2}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), \ldots, x_{n}(t)\right)$ and $\mathbf{f}(t)=\operatorname{col}\left(f_{1}(t), \ldots, f_{n}(t)\right)$.

- We say that (2) is homogeneous if $\mathbf{f}(t) \equiv 0$.

Matrix Differential Equations in Normal Form

Example

Rewrite each of the systems below as a first order equation in matrix notation
(a) $y^{\prime \prime}+2 y^{\prime}+3 y=\frac{1}{t}$
(b) $t y^{\prime \prime}+(1-t) y=e^{t}$
(c) $2 x^{\prime \prime}+6 x-2 y=0$
$y^{\prime \prime}+2 y-2 x=0$

Definition

A system of differential equation is in normal form if it is expressed as

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{f}(t) \tag{2}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), \ldots, x_{n}(t)\right)$ and $\mathbf{f}(t)=\operatorname{col}\left(f_{1}(t), \ldots, f_{n}(t)\right)$.

- We say that (2) is homogeneous if $\mathbf{f}(t) \equiv 0$.
- Say that (2) has constant coefficients if $A(t)=A$ has constant entries.

Constant Coefficients Homogeneous Equations

First we will study the constant coefficient homogeneous equations.

Constant Coefficients Homogeneous Equations

First we will study the constant coefficient homogeneous equations.

Leading Questions

Suppose A is a 2×2 matrix with constant entries.

- How do we write down a general solutions to the equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) ?
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.

Constant Coefficients Homogeneous Equations

First we will study the constant coefficient homogeneous equations.

Leading Questions

Suppose A is a 2×2 matrix with constant entries.

- How do we write down a general solutions to the equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) ?
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.

- How do we solve the initial value problem

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} .
$$

where \mathbf{x}_{0} is a fixed 2-by-1 column vector with constant entries?

Constant Coefficients Homogeneous Equations

First we will study the constant coefficient homogeneous equations.

Leading Questions

Suppose A is a 2×2 matrix with constant entries.

- How do we write down a general solutions to the equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) ?
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.

- How do we solve the initial value problem

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} .
$$

where \mathbf{x}_{0} is a fixed 2-by-1 column vector with constant entries?
If $a \neq 0, b$, and c are constant then the IVP

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y(0)=Y_{0}, \quad y^{\prime}(0)=Y_{1}
$$

is given in matrix notation as $\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}0 & 1 \\ -c / a & -b / a\end{array}\right) \mathbf{x}(t), \mathbf{x}(0)=\operatorname{col}\left(Y_{0}, Y_{1}\right)$.

Contents

(1) Linear Systems in Normal Form
(2) Eigenvalues and Eigenvectors

Defining Eigenvalues and Eigenvectors

- Let $n \geqslant 1$ and suppose A is an n-by- n matrix with constant entries.

Defining Eigenvalues and Eigenvectors

- Let $n \geqslant 1$ and suppose A is an n-by- n matrix with constant entries.
- Write

$$
\mathbb{R}^{n}=\left\{\operatorname{col}\left(x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.

Defining Eigenvalues and Eigenvectors

- Let $n \geqslant 1$ and suppose A is an n-by- n matrix with constant entries.
- Write

$$
\mathbb{R}^{n}=\left\{\operatorname{col}\left(x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in \mathbb{R}\right\}
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.

Definition

A vector $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

Defining Eigenvalues and Eigenvectors

- Let $n \geqslant 1$ and suppose A is an n-by- n matrix with constant entries.
- Write

$$
\mathbb{R}^{n}=\left\{\operatorname{col}\left(x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.

Definition

A vector $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0}=\operatorname{col}(0, \ldots, 0)$.

Defining Eigenvalues and Eigenvectors

- Let $n \geqslant 1$ and suppose A is an n-by- n matrix with constant entries.
- Write

$$
\mathbb{R}^{n}=\left\{\operatorname{col}\left(x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.

Definition

A vector $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0}=\operatorname{col}(0, \ldots, 0)$.
- There exists a scalar $\lambda \in \mathbb{R}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.

Defining Eigenvalues and Eigenvectors

- Let $n \geqslant 1$ and suppose A is an n-by- n matrix with constant entries.
- Write

$$
\mathbb{R}^{n}=\left\{\operatorname{col}\left(x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.

Definition

A vector $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0}=\operatorname{col}(0, \ldots, 0)$.
- There exists a scalar $\lambda \in \mathbb{R}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.

The scalar λ is called an eigenvalue of A.

Defining Eigenvalues and Eigenvectors

- Let $n \geqslant 1$ and suppose A is an n-by- n matrix with constant entries.
- Write

$$
\mathbb{R}^{n}=\left\{\operatorname{col}\left(x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.

Definition

A vector $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0}=\operatorname{col}(0, \ldots, 0)$.
- There exists a scalar $\lambda \in \mathbb{R}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.

The scalar λ is called an eigenvalue of A. If \mathbf{v} satisfies the condition above we say that \mathbf{v} is an eigenvector of A with eigenvalue λ.

Defining Eigenvalues and Eigenvectors

- Let $n \geqslant 1$ and suppose A is an n-by- n matrix with constant entries.
- Write

$$
\mathbb{R}^{n}=\left\{\operatorname{col}\left(x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.

Definition

A vector $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0}=\operatorname{col}(0, \ldots, 0)$.
- There exists a scalar $\lambda \in \mathbb{R}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.

The scalar λ is called an eigenvalue of A. If \mathbf{v} satisfies the condition above we say that \mathbf{v} is an eigenvector of A with eigenvalue λ.

Example

Show that $\mathbf{v}=\binom{3}{1}$ is an eigenvector of $A=\left(\begin{array}{ll}2 & -3 \\ 1 & -2\end{array}\right)$ with eigenvalue $\lambda=1$.

Another Example

Example

- Show that

$$
\mathbf{v}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

is an eigenvector of $A=\left(\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$ with eigenvalue $\lambda=3$.

Another Example

Example

- Show that

$$
\mathbf{v}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

is an eigenvector of $A=\left(\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$ with eigenvalue $\lambda=3$.

- Show that

$$
\mathbf{v}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

is an eigenvector of $A=\left(\begin{array}{ccc}1 & -2 & 0 \\ -2 & 1 & 0 \\ 2 & 2 & 0\end{array}\right)$ with eigenvalue $\lambda=0$.

Finding Eigenvalues and Eigenvectors

Question

Given an n-by- n matrix A, how do we find the eigenvectors and eigenvalues of A ?

Finding Eigenvalues and Eigenvectors

Question

Given an n-by- n matrix A, how do we find the eigenvectors and eigenvalues of A ?
Suppose A is a 2-by-2 matrix.

Finding Eigenvalues and Eigenvectors

Question

Given an n-by- n matrix A, how do we find the eigenvectors and eigenvalues of A ?
Suppose A is a 2-by-2 matrix.

- Trying to find non-zero vectors \mathbf{v} which satisfy an equation $A \mathbf{v}=\lambda \mathbf{v}$.

Finding Eigenvalues and Eigenvectors

Question

Given an n-by- n matrix A, how do we find the eigenvectors and eigenvalues of A ?
Suppose A is a 2-by-2 matrix.

- Trying to find non-zero vectors \mathbf{v} which satisfy an equation $A \mathbf{v}=\lambda \mathbf{v}$.
- We can rearrange this equation to the form

$$
(A-\lambda I) \mathbf{v}=\mathbf{0}, \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Finding Eigenvalues and Eigenvectors

Question

Given an n-by- n matrix A, how do we find the eigenvectors and eigenvalues of A ?
Suppose A is a 2-by-2 matrix.

- Trying to find non-zero vectors \mathbf{v} which satisfy an equation $A \mathbf{v}=\lambda \mathbf{v}$.
- We can rearrange this equation to the form

$$
(A-\lambda I) \mathbf{v}=\mathbf{0}, \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

- The above equation admits a non-zero solution if and only if $A-\lambda I$ is not invertible.

Finding Eigenvalues and Eigenvectors

Question

Given an n-by- n matrix A, how do we find the eigenvectors and eigenvalues of A ?
Suppose A is a 2-by-2 matrix.

- Trying to find non-zero vectors \mathbf{v} which satisfy an equation $A \mathbf{v}=\lambda \mathbf{v}$.
- We can rearrange this equation to the form

$$
(A-\lambda I) \mathbf{v}=\mathbf{0}, \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

- The above equation admits a non-zero solution if and only if $A-\lambda I$ is not invertible.
- Recall that a 2-by-2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if the determinant $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$ is non-zero.

Finding Eigenvalues

Summary

- Given a 2-by-2 matrix A. We can solve for the eigenvalues of A by solving the characteristic equation

$$
|A-\lambda I|=0
$$

which is a quadratic polynomial in the unknown λ.

Finding Eigenvalues

Summary

- Given a 2-by-2 matrix A. We can solve for the eigenvalues of A by solving the characteristic equation

$$
|A-\lambda I|=0
$$

which is a quadratic polynomial in the unknown λ.

- Having found the eigenvalues λ, we can solve for the eigenvectors by using elimination and substituition on the system

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Finding Eigenvalues

Summary

- Given a 2-by-2 matrix A. We can solve for the eigenvalues of A by solving the characteristic equation

$$
|A-\lambda I|=0
$$

which is a quadratic polynomial in the unknown λ.

- Having found the eigenvalues λ, we can solve for the eigenvectors by using elimination and substituition on the system

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

Example

Find the eigenvalues and eigenvectors of the matrices below

$$
\begin{array}{ll}
\text { (a) } A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \quad \text { (b) } A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
\end{array}
$$

